Precision Level Precision Level with Micrometer

Instruction Manual

To ensure correct use, please read this instruction manual carefully before use. After reading, keep it in a safe place where the user can always refer to it.

OBISHI KEIKI SEISAKUSHO Co., Ltd.

1 / 9

Safety Precautions

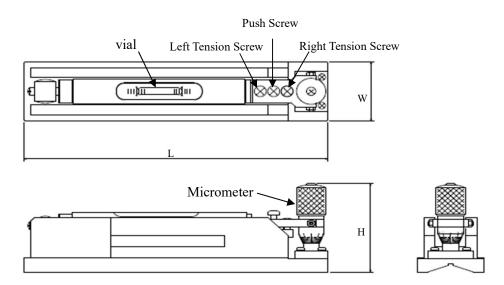
- *Before use, please read this instruction manual carefully and use the product correctly.
- *The precautions shown here are intended to ensure the safe and proper use of the product and to prevent any potential hazards to the user.
- *The precautions are categorized into three levels **Danger, Warning, and Caution** to clearly indicate the severity and urgency of potential harm or damage that may occur if the product is mishandled.

For Safe and Proper Use

This instruction manual includes various symbols and pictograms throughout the text to ensure correct use of the product and to prevent harm or damage to the user.

The symbols and their meanings are as follows.

- Please read the text after fully understanding the symbols and their meanings.
- After reading, be sure to keep this manual in a place where anyone using the product can easily refer to it at any time.
- All of these are safety-related instructions, so please be sure to follow them.

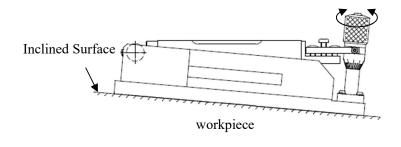

A Danger		This indicates situations where incorrect handling could result in imminent		
		risk of death or serious injury.		
Marning Warning		This indicates situations where incorrect handling could potentially result in		
		death or serious injury.		
A Caution		This indicates situations where incorrect handling may result in injury to		
		persons or only property damage.		
Examples of symbols	<u> </u>	The △ symbol indicates the presence of danger, warning, or caution messages, with specific precautions described within the figure. (The left figure is used to indicate general danger, warning, or caution without specifying details.)		
	0	The o symbol indicates prohibited actions, with specific precautions described within or below the figure. (The figure on the left is used for general prohibition notices without specifying particular actions.)		
	0	The ● symbol indicates mandatory actions, with specific instructions detailed within the figure. (The figure on the left is used for general mandatory actions or instructions without specifying details.)		

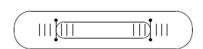
Precision Level with Micrometer Instruction Manual

1. Product Features

- It is capable of measuring large inclinations (slopes) that cannot be measured with ordinary levels.
- It supports inclination heights of up to 20 mm per 200 mm.
- The micrometer reading of this instrument indicates the slope (tangent), not the angle in degrees.
- The sensitivity of the bubble is based on a 200 mm pitch.
- The bottom surface is equipped with a V-groove, allowing measurement of cylindrical parts such as pipes.

2. Names of Parts and External View

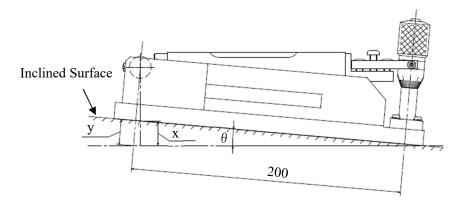



3. Specifications

Code No.	Nominal	Size (L×W×H mm)	Measurement Range (mm/200 mm)	Sensitivity (mm/200 mm)	Mass (kg)
AG101	0. 01	$227 \times 50 \times 75$	20	0. 01	2. 2
AG102	0. 02	~95		0.02	4. 4

4. Instructions for Use

- ① Place this instrument on the workpiece to be measured.
- ② Turn the micrometer to set the bubble at the center of the graduations.



Set the bubble at the center of the graduations

- ③ Read the value on the micrometer.
- 4 Determine the actual inclination height.

Note: The reading on the micrometer can be used directly as the actual height.

x : Actual Inclination Height

y: Micrometer Reading

Calculation Formula

$$\tan\theta = \frac{y}{200}$$

$$x = y \cos \theta$$

(Example) When the micrometer reading is

$$y = 5.25$$

The angle θ is calculated as:

$$\theta = 1^{\circ} \ 30' \ 13''$$

The actual inclination height is:

$$x = y \cos \theta = 5.25 \times 0.9997$$

$$= 5.248 \text{ mm}$$

The difference from the actual inclination height is:

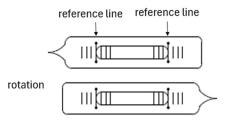
$$y - x = 5.25 - 5.248$$

$$= 0.002 \text{ mm}$$

Reference: List of Differences Between Micrometer Readings and Actual Height Measurements

Unit: mm

Micrometer Reading (y)	Actual Height	Measurement Difference (y - x)	Micrometer Reading (y)	Actual Height (x)	Measurement Difference (y - x)		
5	4. 998	0.002	10	9. 988	0.012		
6	5. 997	0.003	15	14. 958	0.042		
8	7. 994	0.006	20	19. 901	0.099		
Remarks The measurement difference is less than 0.001 mm up to 4 mm.							

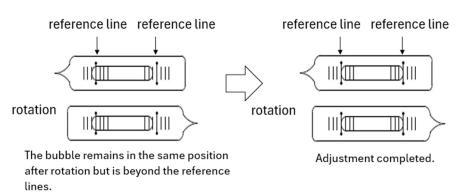

5. Method of Horizontal Adjustment

- (1) Place the level on the reference surface plate and check the position of the bubble.
- (2) At the same position, rotate the level 180 degrees and check the position of the bubble.
- (3) Adjustment is required depending on the position of the bubble.

No Adjustment Required

When the bubble remains in the same position within the reference lines after rotation.

No adjustment is required because both the level and the reference surface plate are horizontal.

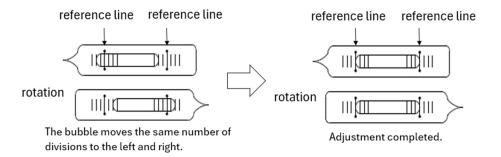

The bubble remains in the same position within the reference lines after rotation.

① [Adjustment of the reference surface plate is required.]

When the bubble remains in the same position after rotation but is beyond the reference lines.

The level is horizontal, but the reference surface plate is not.

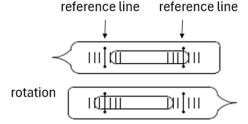
Adjust the inclination of the reference surface plate using the adjustment bolts, and adjust so that both ends of the bubble of the level remain on the reference lines even after rotation.



② 【Zero-point adjustment of the level is required.】

When the bubble moves the same number of divisions to the left and right.

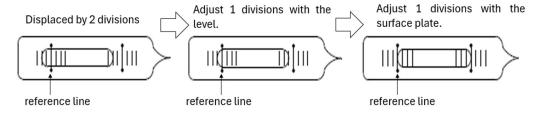
The reference surface plate is level, but the level itself is not.


Adjust the position of the bubble in the vial with reference to [6. Zero Adjustment Method], and adjust it so that, after reversal, both ends of the bubble contact the reference lines of the level.

3 [Adjustment of the reference surface plate and zero-point adjustment of the level are required]

When the bubble moves differently to the left and right.

Neither the level nor the reference surface plate is horizontal.



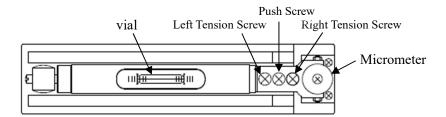
The bubble moves differently to the left and right.

In this case, start the adjustment from the side with the larger horizontal error.

*From the "reversed" side in the above figure, adjust half of the maximum error (in the figure, 1 divisions for a total of 2 divisions) with reference to [6. Zero Adjustment Method], and perform zero-point adjustment of the level.

After performing zero-point adjustment of the level, adjust the horizontal alignment of the reference surface plate.

*After adjustment, always rotate the level 180 degrees and confirm that the bubble is centered on the scale.


If any deviation from level remains, repeat the above adjustment.

6. Zero Adjustment Method

- ① Place the level on a surface plate that has been leveled.
- ② Align the micrometer scale with the zero line.
- 3 After the bubble has settled, check its position.
- ④ If the bubble is tilted to the left, loosen the right tension screw and adjust so that the bubble moves to the right, to the center.

The movement of the bubble when tightening the left or right tension screw is as follows:

- When tightening the left tension screw→the bubble moves to the left.
- When tightening the right tension screw—the bubble moves to the right (micrometer side).

△ Note: Excessive turning of the adjustment screws may cause damage.

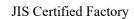
Note: The bubble position can be adjusted with only slight turning of the adjustment screws.

Note: The bubble moves significantly with only a small tightening of the screws.

Note: If the tension screw cannot be tightened, slightly loosen the opposite screw before tightening.

- (5) Move the bubble with the micrometer and again align the micrometer scale with the zero line. If the bubble is not centered between the reference lines, repeat steps 3 and 4.
- ⑥ At the same position on the surface plate, rotate the instrument 180° and confirm that the bubble is centered between the reference lines.

Caution: Do not turn the push screw for zero adjustment. At our company, push screw adjustments are performed only by skilled technicians, and reproducing the adjustment is extremely difficult.


7. Precautions for Use

- ① Clean the Precision Surface and the measurement surface of the workpiece before use.
- ② Handle the instrument carefully during use and storage to avoid impact or shock.
 - ③ Allow the instrument to acclimate to the ambient temperature before use.
 - 4 When moving the instrument on the workpiece, avoid lifting it unnecessarily and move it by sliding.
 - ⑤ Since the bubble in this instrument moves slowly, always take the reading only after the bubble

- has come to a complete stop.
- When held by hand for an extended period, a level with a sensitivity of 0.02 mm/m may exhibit zero-point drift due to temperature changes from hand contact.
- 7 To obtain an accurate reading with the level, always use the average value of the indications at both ends of the bubble.
- ∆ ⑧ Do not use or store the instrument in locations subject to drastic temperature changes.

 Storing or leaving the instrument in environments below −15 °C or above +40 °C may cause damage to the vial, such as breakage.
- 9 After use, always apply rust prevention treatment and store the instrument in its storage case.
 - (I) Accurate measurement cannot be performed if there is rust, burrs, or scratches on the working surface, so handle with care.
 - Before use, remove minor scratches on the working surface locally with an Arkansas stone or similar tool.
 - ① When any of the following occurs, check the sensitivity of the instrument before use:
 - If the instrument has been dropped.
 - If an object has been dropped onto the instrument.
 - ② Check the accuracy regularly before using the product.
- △ ③ If the product has sharp edges, handle it carefully to avoid injuring your fingers or other parts of your body.
- \triangle Wear protective gloves and safety glasses as necessary to prevent injury while working.
- \triangle Do not use this product if it is damaged or deteriorated, as it may cause injury or accidents.
- \triangle If an injury occurs, give first aid immediately and seek medical attention if necessary.

Contact Information

OBISHI KEIKI SEISAKUSHO Co., Ltd.

Head Office: 1-1216-1 Nanyo, Nagaoka City, Niigata 940-1164

TEL: (0258)22-1100 FAX: (0258)22-0014

Tokyo Office: 3-5, Kanda Surugadai, Chiyoda-ku, Tokyo 101-0062

TEL: (03)3293-8881 FAX: (03)3293-8884

Nagoya Office: 2F Nichiju Bldg., 3-15 Oimachi, Naka-ku, Nagoya City, Aichi 460-0015

TEL: (052)322-4031 FAX: (052)322-5647

ISO9001 JQA-QMA11294

ISO9001 Certified (JQA-QMA11294)

Head Office and Factory

Design, development, manufacturing, and calibration services for precision measuring instruments (levels, surface plates, straight edges, reference measuring instruments, square rulers, blocks, dial gauge stands, comparators, angle measuring instruments, bench centers, squareness measuring instruments).